(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → s(0)
f(s(0)) → s(0)
f(s(s(x))) → f(f(s(x)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(0) → s(0)
f(s(0)) → s(0)
f(s(s(z0))) → f(f(s(z0)))
Tuples:
F(s(s(z0))) → c2(F(f(s(z0))), F(s(z0)))
S tuples:
F(s(s(z0))) → c2(F(f(s(z0))), F(s(z0)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c2
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(s(z0))) → c2(F(f(s(z0))), F(s(z0)))
We considered the (Usable) Rules:
f(s(0)) → s(0)
f(s(s(z0))) → f(f(s(z0)))
f(0) → s(0)
And the Tuples:
F(s(s(z0))) → c2(F(f(s(z0))), F(s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(F(x1)) = [2]x12
POL(c2(x1, x2)) = x1 + x2
POL(f(x1)) = [2]
POL(s(x1)) = [2] + x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(0) → s(0)
f(s(0)) → s(0)
f(s(s(z0))) → f(f(s(z0)))
Tuples:
F(s(s(z0))) → c2(F(f(s(z0))), F(s(z0)))
S tuples:none
K tuples:
F(s(s(z0))) → c2(F(f(s(z0))), F(s(z0)))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c2
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))